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ALMOST AND NEAR HIGHER DERIVATION

Young Whan Lee*

Abstract. In this paper we show that every near higher derivation
on a Banach algebra is an almost higher derivation. Also we ob-
tain conditions that every almost higher derivation is a near higher
derivation.

1. Introduction

Let A be a Banach algebra. A linear mapping D on A is a derivation
if

D(ab) = D(a)b + aD(b)

for all a, b ∈ A. Also a class {H0,H1, · · · ,Hm} of linear mappings on A
is a higher derivation of rank m if

Hn(ab) =
n∑

i=0

Hi(a)Hn−i(b)

for n = 1, 2, · · · ,m and for all a, b ∈ A and H0 is an identity mapping
on A, that is, H0 = IdA.

We denote the space of bounded linear mappings on A by BK(A)
which is bounded by a constant K. For the convenience we let

Pm(BK(A))

=
{
{T0, T1, · · · , Tm}

∣∣∣ T0 = IdA, Ti ∈ BK(A) i = 1, 2, · · · ,m
}

.
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For {T0, T1, · · · , Tm} ∈ Pm(BK(A)) we define

T∨n (a, b) = Tn(ab)−
n∑

i=0

Ti(a)Tn−i(b)

for n = 1, 2, · · · ,m and for all a, b ∈ A.
The subset of Pm(BK(A)) consisting of higher derivations is denoted

by Hm(BK(A)). That is, if {T0, T1, · · · , Tm} ∈ Hm(BK(A)) then T∨n = 0
for all n = 1, 2, · · · ,m. For {T0, T1, · · · , Tm} ∈ Pm(BK(A)) we put

d({T0, T1, · · · , Tm})
= inf

{
max

1≤n≤m
||Tn −Hn||

∣∣∣{H0,H1, · · · ,Hm} ∈ Hm(BK(A))
}

and∣∣∣
∣∣∣{T0, T1, · · · , Tm}

∣∣∣
∣∣∣

= max
1≤n≤m

||T∨n ||

= max
1≤n≤m

sup
||a||,||b||=1

{∣∣∣
∣∣∣Tn(ab)−

n∑

i=0

Ti(a)Tn−i(b)
∣∣∣
∣∣∣

∣∣∣ a, b ∈ A
}

.

We can see that {H0, H1, · · · , Hm} ∈ Hm(BK(A)) if and only if

d({H0, H1, · · · , Hm}) = 0.

Note that {T0, T1, · · · , Tm} ∈ Pm(BK(A)) is called a δ−near higher
derivation on A of rank m if

d({T0, T1, · · · , Tm}) ≤ δ

and also {T0, T1, · · · , Tm} is called an ε−almost higher derivation on A
of rank m if

||{T0, T1, · · · , Tm}|| ≤ ε.

B. E. Johnson[4] obtained conditions that every almost multiplicative
map is a near multiplicative map. Note that A. M. Sinclair[6] proved
that every derivation on a semisimple Banach algebra is continuous. F.
Gurick[2] introduced the concept of higher derivation and N. P. Jewell[3]
showed that the result of A. M. Sinclair could be extended to higher
derivation. The author[5] solved the automatic continuity problem of
an approximate higher derivation on a semisimple Banach algebra and
investigate Hyers-Ulam stability for a higher derivation.

In this paper, we show that every near higher derivation on a Banach
algebra is an almost higher derivation and obtain conditions that every
almost higher derivation is a near higher derivation.
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Definition 1.1. We say that every near higher derivation on a Ba-
nach algebra A of rank m is an almost higher derivation if for each
ε ≥ 0 there exists δ ≥ 0 such that if d({T0, T1, · · · , Tm}) ≤ δ for any
{T0, T1, · · · , Tm} ∈ Pm(BK(A)) then ||{T0, T1, · · · , Tm}|| ≤ ε.

Theorem 1.2. Let A be a Banach algebra. Every near higher deriva-
tion on A of rank m is an almost higher derivation.

Proof. Let ε ≥ 0 be given, {T0, T1, · · · , Tm} ∈ Pm(BK(A)) and δ =
ε

2K(m−2)+3 . Also let {T0, T1, · · · , Tm} be a δ−near derivation on A of
rank m. Then there is a {H0,H1, · · · ,Hm} ∈ Hm(BK(A)) such that for
n = 1, 2, · · · ,m, ||Tn −Hn|| ≤ δ. Also, for n = 1, 2, · · · ,m, we have

||T∨n (a, b)||

=
∣∣∣
∣∣∣Tn(ab)−

n∑

i=0

Ti(a)Tn−i(b)
∣∣∣
∣∣∣

≤ ||(Tn −Hn)(ab)||+
n∑

i=0

||(Ti −Hi)(a)Hn−i(b)||

+
n∑

i=0

||Ti(a)(Hn−i − Tn−i)(b)||

≤ ||(Tn −Hn)||||a||||b||

+
n−1∑

i=1

||(Ti −Hi)(a)Hn−i(b)||

+ ||(Tn −Hn)(a)b||+ ||(T0 −H0)(a)Hn(b)||

+
n−1∑

i=1

||Ti(a)(Hn−i − Tn−i)(b)||+ ||a(T0 −H0)(b)||+ ||a(Hn − Tn)(b)||

≤ (3 + 2K(n− 2)) max
1≤i≤m

||(Ti −Hi)||

for all a, b ∈ A with ||a|| = 1, ||b|| = 1 and for all {H0,H1, · · · ,Hm} ∈
Hm(BK(A)). Therefore we have

||{T0, T1, · · · , Tn}|| = max
1≤n≤m

||T∨n ||
≤ (3 + 2K(m− 2))d({T0, T1, · · · , Tm})
≤ (3 + 2K(m− 2))δ
≤ ε.
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Definition 1.3. We say that every almost higher derivation on a
Banach algebra A of rank m is a near higher derivation if for each
ε ≥ 0 there exists δ ≥ 0 such that if ||{T0, T1, · · · , Tm}|| ≤ δ for any
{T0, T1, · · · , Tm} ∈ Pm(BK(A)) then d({T0, T1, · · · , Tm}) ≤ ε.

Example 1.4. Let A be a Banach algebra of 2 × 2 matrices which
the matrix is of the form (

a 0
b a

)

for each scalar a and b. Let ε1 ≥ 0 and ε2 ≥ 0 be given. Define
mappings {H0,H1, H2} by

H0 = Id,

H1

(
a 0
b a

)
=

(
0 0

ε1b 0

)
,

H2

(
a 0
b a

)
=

(
0 0

ε2b 0

)
.

Then {H0,H1, H2} is a higher derivation of rank 2. Now define mappings
{T0, T1, T2} by

T0 = Id,

T1

(
a 0
b a

)
=

(
ε1a 0
0 ε1a

)
,

T2

(
a 0
b a

)
=

(
ε2a 0
0 ε2a

)
.

Then ||T∨1 || ≤ ε1, ||T∨2 || ≤ ε2 ||T1 − H1|| ≤ ε1 and ||T2 − H2|| ≤ ε2

Therefore {T0, T1, T2} is max{ε1, ε2}−almost higher derivation of rank
2 and also it is a max{ε1, ε2}−near higher derivation.

Theorem 1.5. Let A be a finite dimensional Banach algebra. Then
every almost higher derivation on A of any rank m is a near higher
derivation.

Proof. Note that the dimension of (BK(A))m is also finite. Let ε ≥ 0
be given and

C =
{
{T0, T1, · · · , Tm} ∈ Pm(BK(A))

∣∣∣d({T0, T1, · · · , Tm}) ≥ ε
}

,

Gδ =
{
{T0, T1, · · · , Tm} ∈ Pm(BK(A))

∣∣∣||{T0, T1, · · · , Tm}|| > δ
}

.

We claim that Gδ ⊆ (BK(A))m is open and C ⊆ (BK(A))m is closed.
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Let ε ≥ 0 be given and there exists

{J(t,0), J(t,1), · · · , J(t,m)} ∈ (BK(A))m\Gδ

such that

{J(t,0), J(t,1), · · · , J(t,m)} → {J0, J1, · · · , Jm}

in Gc
δ as t →∞. Since {J(t,0), J(t,1), · · · , J(t,m)} /∈ Gδ for every (t, n),

sup
||a||,||b||=1

∣∣∣
∣∣∣J(t,n)(ab)−

m∑

i=0

J(t,i)(a)J(t,n−1)(b)
∣∣∣
∣∣∣ ≤ δ

and there is a constant N such that for all t ≥ N and n = 1, 2, · · · ,m

||Jn − J(t,n)|| ≤ ε.

Then for each n we have

||J∨n ||

= sup
||a||,||b||=0

∣∣∣
∣∣∣Jn(ab)−

n∑

i=0

Ji(a)Jn−i(b)
∣∣∣
∣∣∣

= sup
||a||,||b||=0

(
||(Jn − J(t,n))(ab)||+ ||J(t,n)(ab)

−
n∑

i=0

J(t,i)(a)J(t,n−i)(b)||

+
n∑

i=0

||J(t,i)(a)J(t,n−i)(b)− Ji(a)Jn−i(b)||
)

≤ ε + δ + sup
||a||,||b||=0

n∑

i=0

||(J(t,i) − Ji)(a)J(t,n−i)(b)||

+ sup
||a||,||b||=0

n∑

i=0

||Ji(a)(J(t,n−i) − Jn−i)(b)||
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≤ ε + δ + sup
||a||,||b||=0

n−1∑

i=1

||(J(t,i) − Ji)(a)J(t,n−i)(b)||

+ ||(J(t,n) − Jn)(a)J(t,0)(b)||

+ sup
||a||,||b||=0

n−1∑

i=1

||Ji(a)(J(t,n−i) − Ji)(b)||+ ||J0(a)(J(t,n) − Jn)(b)||

≤ ε + δ + 2ε + 2K(n− 2)ε

= Mε + δ, (where M = 2K(n− 2) + 3).

Since ε was arbitrary, ||J∨n || ≤ δ for 1 ≤ n ≤ m and so

||{J0, J1, · · · , Jn}|| ≤ δ.

This states that {J0, J1, · · · , Jn} /∈ Gδ and thus {J0, J1, · · · , Jn} ∈ Gc
δ.

This says that Gδ is open.
To show that C is closed, we let

{J(t,0), J(t,1), · · · , J(t,n)} → {J0, J1, · · · , Jm}
in C as t →∞. Then

||{J(t,0), J(t,1), · · · , J(t,n)}||
= inf

{
max

1≤n≤m
||Hn − J(t,n)||

∣∣∣{H0,H1, · · · ,Hn} ∈ Hm(BK(A))
}

≥ ε

and for arbitrary ε′ ≥ 0 there is N such that for all n (n = 1, 2, · · · ,m),
and t > N

||Jn − J(t,n)|| < ε′.

Thus for every (n = 1, 2, · · · ,m), we have

||Hn − Jn|| ≥ ||Hn − J(n,t)|| − ||J(n,t) − Jn|| ≥ ε− ε′.

Since ε′ was arbitrary, d({J0, J1, · · · , Jn}) ≥ ε. Therefore {J0, J1, · · · , Jn}
∈ C and thus C is closed.

Since C ⊆ BK(A)m and dim(BK(A)m) < ∞, C is compact. Since

C ⊆ BK(A)m\Hm(BK(A)) ⊆
⋃

δ>0

Gδ,

there exist δ1, δ2, · · · , δl ≥ 0 such that
l⋃

i=1

Gδi ⊃ C.
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Let 4 = min{δ1, δ2, · · · , δl}. Then C ⊂ G4. Now let {T0, T1, · · · , Tm} ∈
Pm(BK(A)) with ||{T0, T1, · · · , Tm}|| ≤ 4. Then {T0, T1, · · · , Tm} /∈ C.
Therefore

d({T0, T1, · · · , Tm}) < ε.

This says that every almost higher derivation on A of rank m is a near
higher derivation.

Theorem 1.6. Let A be a Banach algebra. Every almost higher
derivation on A of any rank m is a near higher derivation if and only if
for any

{J(t,0), J(t,1), · · · , J(t,n)} ∈ Pm(BK(A))

with J∨(t,n) → 0 as t →∞ (n = 1, 2, · · · ,m), there exists

{H0, H1, · · · ,Hm} ∈ Hm(BK(A))

such that for each n (n = 1, 2, · · · ,m), J(t,n) −Hn → 0 as t →∞.

Proof. Let {J(t,0), J(t,1), · · · , J(t,n)} ∈ Pm(BK(A)) and J∨(t,n) → 0 as
t → ∞ (n = 1, 2, · · · , m). Then for any ε ≥ 0 we can choose δ and t
such that

||{J(t,0), J(t,1), · · · , J(t,n)}|| = max
1≤i≤m

||J∨(t,i)|| ≤ δ.

By hypothesis,

d({J(t,0), J(t,1), · · · , J(t,n)})
= inf

{
max

1≤n≤m
||J(t,n) −Hn||

∣∣∣{H0, H1, · · · , Hm} ∈ Hm(Bk(A))
}

≤ ε.

Thus there exists {H0,H1, · · · , Hm} ∈ Hm(BK(A)) such that J(t,n) −
Hn → 0 as t →∞.

Conversely, suppose that ε ≥ 0 and

{J(t,0), J(t,1), · · · , J(t,n)} ∈ Pm(BK(A))

and J∨(t,n) → 0 as t →∞ (n = 1, 2, · · · , m). Then there exists δ ≥ 0, N

and
{H0,H1, · · · ,Hn} ∈ Hm(Bk(A))

such that for every t ≥ N and n = 1, 2, · · · , m, ||J∨(t,n)|| ≤ δ implies
||J(t,n) −Hn|| ≤ ε. That is, if

||{J(t,0), J(t,1), · · · , J(t,n)}|| ≤ δ
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then

d({J(t,0), J(t,1), · · · , J(t,n)}) ≤ ε.

Thus every almost higher derivation on A of any rank m is a near higher
derivation.

Example 1.7. Let C∞[0, 1] denote the algebra of all complex valued
functions on [0,1] which have infinitely differentiable functions. J. F.
Feinstein[1] got several Banach algebra norms on C∞[0, 1]. We give a
Banach algebra norm on C∞[0, 1] by

||f || =
∞∑

n=0

||f (n)||∞
(n!)2

where ||f ||∞ = supt∈[0,1] |f(t)|. Then ||f ′|| ≤ ||f || and ||f (k)|| ≤ (k!)2||f ||,
because for any k ≥ 1

1
(k!)2

( 1
(2!)2

+
(2!)2

(3!)2
+

(3!)2

(4!)2
+ · · ·

)
||f (k)|| ≤ 1

(k!)2
||f (k)|| ≤ ||f ||.

We denote this Banach algebra by C∞([0, 1], (n!)2).
Define {H0,H1, · · · ,Hm} ∈ Hm(BK(C∞([0, 1], (n!)2))) by H0 = Id

and Hn(f) = f (n) for n = 1, 2, · · · ,m. Also define {T0, T1, · · · , Tm} ∈
Pm(BK(C∞([0, 1], (n!)2))) by T0 = Id and Tn(f) = f (n) + εf for n =
1, 2, · · · ,m. Then ||Tn(f)−Hn(f)|| ≤ ε||f || and

||T∨n (fg)|| = ||Tn(fg)−
m∑

i=0

Ti(f)Tn−i(g)||

= ||(fg)(n) + εfg −
m∑

i=0

(f (i) + εf)(g(n−i) + εg)||

≤ ε
(
ε +

n−1∑

i=1

(i!)2((m− i)!)2
)
||f ||||g||

for n = 1, 2, · · · ,m and f, g ∈ C∞[0, 1]. Therefore {T0, T1, · · · , Tm} is
an almost and near higher derivation.

Definition 1.8. Let A be a commutative Banach algebra. A linear
mapping D on A is a ρ-derivation (or module derivation) if

D(ab) = ρ(b)D(a) + ρ(a)D(b)

for all a, b ∈ A, which ρ is a continuous homomorhpism on A . Also
a class {H0 = ρ,H1, · · · ,Hm} of linear mappings on A is a ρ-higher
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derivation of rank m if

Hn(ab) =
n∑

i=0

Hi(a)Hn−i(b)

for n = 1, 2, · · · ,m and for all a, b ∈ A. As well as almost and near
higher derivations, we can define almost and near ρ-higher derivations.

We can see that all theorems above hold for the case of ρ-higher
derivation.

Theorem 1.9. Let {T0 = ρ, T1, T2} ∈ P2(BK(C∞([0, 1], (n!)2))) be
an ε−almost ρ-higher derivation of rank 2 with ρ(zi)Tn(zj) = 0 for
i + j > s (for some integer s and i, j = 0, 1, · · · , n). Then {T0, T1, T2}
is a near ρ-higher derivation.

Proof. For the convenience, we denote ρ(f)g by fg. We prove the
following formula by induction; For m ≥ 2, we have

T1(zl) =T∨1 (z, zl−1) + zT∨1 (z, zl−2) + z2T∨1 (z, zl−3)

+ · · ·+ zl−2T∨1 (z, z) + lzl−1T1(z).

It is trivial for l = 2. Assume that it holds for l. Then

T1(zl+1) =T∨1 (z, zl) + zT1(zl) + zlT1(z)

=T∨1 (z, zl) + zT∨1 (z, zl−1)

+ · · ·+ zl−1T∨1 (z, z) + (l + 1)zlT1(z).

For any polynomial p(z) = a0 + a1z + · · ·+ atz
t (t ≥ s), we have

T1(p) =T1(a0) + a1T1(z) + a22zT1(z) + · · ·+ attz
t−1T1(z)

+ T∨1 (z, z)(a2 + a3z + · · ·+ atz
t−2)

+ T∨1 (z, z2)(a3 + a4z + · · ·+ atz
t−3)

+ · · ·+ T∨1 (z, zt−1(at + T∨1 (z, zt).

Since ziTn(zj) = 0 for i + j > s for some integer s and i, j = 0, 1, 2 it
is easy to show that ziT∨1 (z, zj) = 0 for i + j > s. Thus

T1(p) =p′T1(z) + T1(a0) + T∨1 (z, z)(a2 + a3z + · · ·+ as−3z
s−1)

+ T∨1 (z, z2)(a3 + a4z + · · ·+ as−4z
s−2) + · · ·+ T∨1 (z, zs)(as+1).

Since n!|an| ≤ ||p(n)||∞ ≤ ||p(n)|| ≤ (n!)2||p||, |an| ≤ (n!)||p|| for all
n = 0, 1, 2, · · · . Thus we have

||T1(p)− p′T1(z)|| ≤ εs(1 + 2! + 3! + · · ·+ (s− 3)!)||p|| = ε′||p||
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for ε′ = m(1 + 2! + 3! + · · ·+ (s− 3)!).
We define H0,H1 ∈ BK(C∞([0, 1], (n!)2)) by H0 = ρ,H1(f) = f ′T1(z).

Then H1 is a derivation and for all f ∈ C∞([0, 1], (n!)2)

||T1(f)−H1(f)|| ≤ ε′||f ||.

By induction, we have

T2(zl) =T∨2 (z, zl−1) + zT∨2 (z, zl−2) + z2T∨1 (z, zl−3) + · · ·+ zl−2T∨2 (z, z)

+ T1(z)(T∨1 (z, zl−2) + 2zT∨1 (z, zl−3) + · · ·+ (l − 2)zl−3T∨1 (z, z))

+
l(l − 1)

2
zl−2T1(z)2 + lzl−1T2(z)

for l ≥ 2. It is trivial for n = 2. Assume that it is true for l. Then

T2(zl) =T∨2 (z, zl) + zT2(zl) + zlT2(z) + T1(z)T1(zl)

=T∨2 (z, zl) + zT∨2 (z, zl−1) + · · ·+ zl−1T∨2 (z, z)

+ T1(z)(T∨1 (z, zl) + 2zT∨1 (z, zl−2)

+ · · ·+ (l + 1)zl−2T∨1 (z, z))

+
l(l + 1)

2
zl−1T1(z)2 + (l + 1)zlT2(z).

For any polynomial p(z) = a0 + a1z + · · ·+ atz
t (t ≥ s),

T2(p) =T2(a0) + a1T2(z) + a22zT2(z) · · ·+ attz
t−1T2(z)

+
T1(z)2

2
(a22 + a33 · 2z · · ·+ att(t− 1)zt−2)

+ T∨2 (z, z)(a2 + a3z + · · ·+ atz
t−2)

+ T∨2 (z, z2)(a3 + a4z + · · ·+ atz
t−3)

+ · · ·+ T∨2 (z, zt−1)at

+ T1(z)T∨1 (z, z)(a3 + a42z + · · ·+ at(t− 2)zt−3)

+ T1(z)T∨1 (z, z2)(a4 + a52z + · · ·+ at(t− 3)zt−4)

+ · · ·+ T1(z)T∨1 (z, zt−2)at.

Thus we have
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T2(p) =p′T2(z) +
1
2
p′′T2(z) + T2(a0)

+ T∨2 (z, z)(a2 + a3z + · · ·+ as+1z
s−1)

+ T∨2 (z, z2)(a3 + a4z + · · ·+ as+1z
s−2)

+ · · ·+ T∨2 (z, zs)as+1

+ T1(z)T∨1 (z, z)(a3 + a42z + · · ·+ as+2sz
s−1)

+ T1(z)T∨1 (z, z2)(a4 + a52z + · · ·+ as+2(s− 1)zs−2)

+ · · ·+ T1(z)T∨1 (z, zs)as+2.

By the calculation above we get

||T2(p)− p′T2(z)− 1
2
f ′′T1(z)2||

≤ εs(1 + 2! + 3! + · · ·+ (s + 1)!)||p||
+ εs||T1||(3! + 4! + · · ·+ (s + 2)!)||p||
:= ε′′||p||

for a constant ε′′, where ε′′ → 0 as ε′ → 0.
We define H2 ∈ BK(C∞([0, 1], (n!)2)) by H2(f) = f ′T2(z)+1

2f ′′T1(z)2.
Then {ρ, H1,H2} is a ρ-higher derivation of rank 2 and for all f ∈
C∞([0, 1], (n!)2)

||T2(f)−H2(f)|| ≤ ε′′||f ||.
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